tracdap.rt.api

TRAC model API for Python

Classes

ArrayValue

An array value holds an array of other Values.

BasicType

Basic types provide the set of core types available in the TRAC type system.

CommonFileTypes

CopyStatus

Status of an individual copy of a data storage item

CustomDefinition

Define a custom object that can be stored and managed in the TRAC metadata store

DataDefinition

Define a dataset that can be stored and managed in the TRAC platform

DateValue

Represent a date value.

DatetimeValue

Represent a date-time value.

DecimalValue

Represent a decimal value.

ExportDataJob

Specification for an EXPORT_DATA job

FieldSchema

Schema for an individual field in a tabular dataset

FileDefinition

Describes a file object stored in the TRAC platform

FileType

FlowDefinition

A flow defines an execution graph as a set of connections between models and data

FlowEdge

A connection between two nodes in a flow

FlowNode

Describes an individual node in a flow

FlowNodeType

Specify the type of an individual flow node

FlowSocket

A socket is a point of connection for wiring up the edges in a flow

ImportDataJob

Specification for an IMPORT_DATA job

ImportModelJob

Specification for an IMPORT_MODEL job

IncarnationStatus

Status of an individual incarnation of a data storage item

JobDefinition

Define a job to run on the TRAC platform

JobGroup

Specification for a JOB_GROUP job, which runs a collection of other jobs

JobGroupType

Specify the group type for a JOB_GROUP job

JobStatusCode

Indicate the status of a job in the TRAC platform

JobType

Specify the type of an individual TRAC job

LogicalExpression

Logical expression for a search of the TRAC metadata store.

LogicalOperator

Metadata search logical operator, used as part of a LogicalExpression.

MapValue

A map value holds a map of string keys to other Values.

MetadataFormat

Available formats for representing the TRAC metadata.

MetadataVersion

Explicit versioning of the metadata schema.

ModelDefinition

Define a model for execution on the TRAC platform

ModelInputSchema(schema[, label, optional, dynamic, ...])

ModelOutputSchema(schema[, label, optional, dynamic, ...])

ModelParameter

Describes an individual parameter of a model

ModelType

Identify specialized model types for specific tasks

ObjectDefinition

Object definitions are the core structural element of TRAC's metadata model

ObjectType

Enumeration of TRAC's core object types.

ParallelJobGroup

A job group where all jobs runs in parallel

PartKey

Partition key for tabular datasets

PartType

Partitioning scheme applied to a dataset

ResourceType

Enumeration of infrastructure resources that can be added to a tenant

ResultDefinition

Define the result of a job after it has completed

RunFlowJob

Specification for a RUN_FLOW job

RunModelJob

Specification for a RuN_MODEL job

SchemaDefinition

A schema definition describes the schema of a dataset

SchemaType

Enumeration of the available types of data schema

SearchExpression

Search expression for a search of the TRAC metadata store.

SearchOperator

Metadata search term operator, used as part of a SearchTerm

SearchParameters

Parameters to define a metadata search.

SearchTerm

Individual search term for a search of the TRAC metadata store.

SequentialJobGroup

A job group where each job runs in sequence

StorageCopy

Define physical storage for an individual copy of a data item

StorageDefinition

Defines the physical storage for a file or dataset object

StorageIncarnation

Define physical storage for an individual incarnation of a data item

StorageItem

Define physical storage for an individual data item

TableSchema

Schema for a tabular dataset

Tag

Tags are the core informational element of TRAC's metadata model.

TagHeader

A tag header describes the identity and version of an object.

TagOperation

Enumeration of available TagUpdate operations.

TagSelector

A tag selector describes the selection of a unique object at a point in time.

TagUpdate

A tag update is a request for a single update operation on a tag.

TenantInfo

Information about a tenant that is set up on the TRAC platform.

TracContext

Interface that allows model components to interact with the platform at runtime

TracModel

Base class that model components inherit from to be recognised by the platform

TypeDescriptor

A type descriptor describes a data type used in the TRAC platform.

Value

A value expressed in the TRAC type system.

Functions

A(attr_name, attr_value[, attr_type, categorical])

Shorthand alias for define_attribute()

F(field_name, field_type, label[, business_key, ...])

Shorthand alias for define_field()

P(param_name, param_type, label[, default_value, ...])

Shorthand alias for define_parameter()

define_attribute(attr_name, attr_value[, attr_type, ...])

Define an individual model attribute

define_attributes(*attributes)

Define a set of attributes to catalogue and describe a model

define_field(field_name, field_type, label[, ...])

Define an individual field for use in a schema

define_file_type(extension, mime_type)

define_input(requirement, *[, label, optional, ...])

define_input_file(extension, mime_type, *[, label, ...])

define_input_table(*fields[, label, optional, ...])

Define a model input with a table schema

define_output(requirement, *[, label, optional, ...])

define_output_file(extension, mime_type, *[, label, ...])

define_output_table(*fields[, label, optional, ...])

Define a model output with a table schema

define_parameter(param_name, param_type, label[, ...])

Define an individual model parameter

define_parameters(*parameters)

Defined the set of parameters used by a model

define_schema(*fields[, schema_type, dynamic])

Create a SchemaDefinition from a list of fields

load_schema(package, schema_file[, schema_type])

Load a SchemaDefinition from a CSV file in the model package

Attributes

BOOLEAN

Synonym for BasicType.BOOLEAN

DATE

Synonym for BasicType.DATE

DATETIME

Synonym for BasicType.DATETIME

DECIMAL

Synonym for BasicType.DECIMAL

FLOAT

Synonym for BasicType.FLOAT

INTEGER

Synonym for BasicType.INTEGER

STRING

Synonym for BasicType.STRING

Package Contents

tracdap.rt.api.A(attr_name, attr_value, attr_type=None, categorical=False)

Shorthand alias for define_attribute()

Note

This is an experimental API that is not yet stabilised, expect changes in future versions of TRAC

Return type:

TagUpdate

Parameters:
  • attr_name (str)

  • attr_value (Any)

  • attr_type (BasicType | None)

  • categorical (bool)

tracdap.rt.api.F(field_name, field_type, label, business_key=False, categorical=False, not_null=None, format_code=None, field_order=None)

Shorthand alias for define_field()

Return type:

FieldSchema

Parameters:
  • field_name (str)

  • field_type (BasicType)

  • label (str)

  • business_key (bool)

  • categorical (bool)

  • not_null (bool | None)

  • format_code (str | None)

  • field_order (int | None)

tracdap.rt.api.P(param_name, param_type, label, default_value=None, *, param_props=None)

Shorthand alias for define_parameter()

Return type:

_Named[ModelParameter]

Parameters:
  • param_name (str)

  • param_type (BasicType | TypeDescriptor)

  • label (str)

  • default_value (Any | None)

  • param_props (Dict[str, Any] | None)

tracdap.rt.api.define_attribute(attr_name, attr_value, attr_type=None, categorical=False)

Define an individual model attribute

Note

This is an experimental API that is not yet stabilised, expect changes in future versions of TRAC

Model attributes can be defined using this function or the shorthand alias A(). A name and value are always required to define an attribute. Attribute type is required for multivalued attributes but is optional otherwise. The categorical flag can be applied to STRING attributes to mark them as categorical.

Model attributes can be passed to define_attributes(), either as individual arguments or as a list, to create the set of attributes for a model.

Parameters:
  • attr_name (str) – The attribute name

  • attr_value (Any) – The attribute value (as a raw Python value)

  • attr_type (BasicType | None) – The TRAC type for this attribute (optional, except for multivalued attributes)

  • categorical (bool) – A flag to indicate whether this attribute is categorical

Returns:

A model attribute, in the format understood by the TRAC platform

Return type:

TagUpdate

tracdap.rt.api.define_attributes(*attributes)

Define a set of attributes to catalogue and describe a model

Note

This is an experimental API that is not yet stabilised, expect changes in future versions of TRAC

Model attributes can be defined using define_attribute() or the shorthand alias A(). This function takes a number of model attributes, either as individual arguments or as a list, and arranges them in the format required by TracModel.define_attributes().

Parameters:

attributes (TagUpdate | List[TagUpdate]) – The attributes that will be defined, either as individual arguments or as a list

Returns:

A set of model attributes, in the correct format to return from TracModel.define_attributes()

Return type:

List[TagUpdate]

tracdap.rt.api.define_field(field_name, field_type, label, business_key=False, categorical=False, not_null=None, format_code=None, field_order=None)

Define an individual field for use in a schema

Individual fields in a schema can be defined using this method or the shorthand alias F(). The name, type and label of a field are always required. The business_key and categorical flags are false by default. The not_null flag is false by default unless the field is a business key, in which case it is true by default. Explicitly specifying not_null=False for a business key will cause a validation error. Format code is optional.

So long as field order is not specified for any field in a schema, field ordering will be assigned automatically. If field orders are specified explicitly, the fields in a schema must have a contiguous ordering starting at 0. When updating a model it is good practice to leave existing fields in order and add any new fields to the end of the list.

Schema fields can be passed to define_schema(), either as individual arguments or as a list, to create a SchemaDefinition. To define the inputs or outputs of a TracModel, fields can also be passed directly to define_input_table() or define_output_table().

Parameters:
  • field_name (str) – The field’s name, used as the field identifier in code and queries (must be a valid identifier)

  • field_type (BasicType) – The data type of the field, only primitive types are allowed

  • label (str) – A descriptive label for the field (required)

  • business_key (bool) – Flag indicating whether this field is a business key for its dataset (default: False)

  • categorical (bool) – Flag indicating whether this is a categorical field (default: False)

  • not_null (bool | None) – Whether this field has a not null constraint (default: True for business keys, false otherwise)

  • format_code (str | None) – A code that can be interpreted by client applications to format the field (optional)

  • field_order (int | None) – Explicit field ordering (optional)

Returns:

A field schema, suitable for use in a schema definition

Return type:

FieldSchema

tracdap.rt.api.define_file_type(extension, mime_type)
Parameters:
  • extension (str)

  • mime_type (str)

Return type:

FileType

tracdap.rt.api.define_input(requirement, *, label=None, optional=False, dynamic=False, input_props=None)
Parameters:
  • requirement (Union[SchemaDefinition, FileType])

  • label (Optional[str])

  • optional (bool)

  • dynamic (bool)

  • input_props (Optional[Dict[str, Any]])

tracdap.rt.api.define_input_file(extension, mime_type, *, label=None, optional=False, input_props=None)
Parameters:
  • extension (str)

  • mime_type (str)

  • label (Optional[str])

  • optional (bool)

  • input_props (Optional[Dict[str, Any]])

Return type:

ModelInputSchema

tracdap.rt.api.define_input_table(*fields, label=None, optional=False, dynamic=False, input_props=None)

Define a model input with a table schema

Individual fields can be defined using define_field() or the shorthand alias F(). This function takes a number of fields, either as individual arguments or as a list, and uses them to create a ModelInputSchema.

Use the label property to add a descriptive label to a model input. Inputs can be marked as optional in which case they are not required when running a job, use TracContext.has_dataset() to determine whether an optional input has been provided. Inputs can be marked as dynamic in which case the schema is not defined until the model runs, use TracContext.get_schema() to get the schema of a dynamic input.

You can use input_props to associate arbitrary key-value properties with this model input. These properties are not used by the TRAC engine, but are stored in the model metadata for the input and can be used as needed in 3rd-party applications.

Parameters:
  • fields (FieldSchema | List[FieldSchema]) – A set of fields to make up a TableSchema

  • label (str | None) – An optional label (of type str) for a model input schema. Default value: None.

  • optional (bool) – Mark this input as an optional model input

  • dynamic (bool) – Mark this input as a dynamic model input (the list of fields must be empty)

  • input_props (Dict[str, Any] | None) – Associate key-value properties with this input (not used by the TRAC engine)

Returns:

A model input schema, suitable for returning from TracModel.define_inputs()

Return type:

ModelInputSchema

tracdap.rt.api.define_output(requirement, *, label=None, optional=False, dynamic=False, output_props=None)
Parameters:
  • requirement (Union[SchemaDefinition, FileType])

  • label (Optional[str])

  • optional (bool)

  • dynamic (bool)

  • output_props (Optional[Dict[str, Any]])

tracdap.rt.api.define_output_file(extension, mime_type, *, label=None, optional=False, output_props=None)
Parameters:
  • extension (str)

  • mime_type (str)

  • label (Optional[str])

  • optional (bool)

  • output_props (Optional[Dict[str, Any]])

Return type:

ModelOutputSchema

tracdap.rt.api.define_output_table(*fields, label=None, optional=False, dynamic=False, output_props=None)

Define a model output with a table schema

Individual fields can be defined using define_field() or the shorthand alias F(). This function takes a number of fields, either as individual arguments or as a list, and uses them to create a ModelOutputSchema.

Use the label property to add a descriptive label to a model output. Outputs can be marked as optional, a model can decide not to provide an optional output without causing an error. Outputs can be marked as dynamic in which case the schema is not defined until the model runs, use TracContext.put_schema() to set the schema of a dynamic output before saving it.

You can use output_props to associate arbitrary key-value properties with this model output. These properties are not used by the TRAC engine, but are stored in the model metadata for the output and can be used as needed in 3rd-party applications.

Parameters:
  • fields (FieldSchema | List[FieldSchema]) – A set of fields to make up a TableSchema

  • label (str | None) – An optional label (of type str) for a model output schema. Default value: None.

  • optional (bool) – Mark this output as an optional model output

  • dynamic (bool) – Mark this output as a dynamic model output (the list of fields must be empty)

  • output_props (Dict[str, Any] | None) – Associate key-value properties with this output (not used by the TRAC engine)

Returns:

A model output schema, suitable for returning from TracModel.define_outputs()

Return type:

ModelOutputSchema

tracdap.rt.api.define_parameter(param_name, param_type, label, default_value=None, *, param_props=None)

Define an individual model parameter

Model parameters can be defined using this method or the shorthand alias P(). Name, type and label are always required to define a parameter. The parameter name is used to set up parameters in a job and to access parameter values at runtime using TracContext.get_parameter().

Use the label property to add a descriptive label to a model parameter. If a default value is specified, the model parameter becomes optional. It is ok to omit optional parameters when running models or setting up jobs, in which case the default value will be used. If no default is specified then the model parameter becomes mandatory, a value must always be supplied in order to execute the model. TRAC will apply type coercion where possible to ensure the default value matches the parameter type, if the default value cannot be coerced to match the parameter type then model validation will fail.

You can use param_props to associate arbitrary key-value properties with this model parameter. These properties are not used by the TRAC engine, but are stored in the model metadata for the parameter and can be used as needed in 3rd-party applications.

Model parameters can be passed to define_parameters(), either as individual arguments or as a list, to create the set of parameters for a model.

Parameters:
  • param_name (str) – The parameter name, used to identify the parameter in code (must be a valid identifier)

  • param_type (BasicType | TypeDescriptor) – The parameter type, expressed in the TRAC type system

  • label (str) – A descriptive label for the parameter (required)

  • default_value (Any | None) – A default value to use if no explicit value is supplied (optional)

  • param_props (Dict[str, Any] | None) – Associate key-value properties with this parameter (not used by the TRAC engine)

Returns:

A named model parameter, suitable for passing to define_parameters()

Return type:

_Named[ModelParameter]

tracdap.rt.api.define_parameters(*parameters)

Defined the set of parameters used by a model

Model parameters can be defined using define_parameter() or the shorthand alias P(). This function takes a number of parameters, either as individual arguments or as a list, and arranges them in the format required by TracModel.define_parameters()

Parameters:

parameters (_Named[ModelParameter] | List[_Named[ModelParameter]]) – The parameters that will be defined, either as individual arguments or as a list

Returns:

A set of model parameters, in the correct format to return from TracModel.define_parameters()

Return type:

Dict[str, ModelParameter]

tracdap.rt.api.define_schema(*fields, schema_type=SchemaType.TABLE, dynamic=False)

Create a SchemaDefinition from a list of fields

Individual fields can be defined using define_field() or the shorthand alias F(). This function takes a number of fields, either as individual arguments or as a list, and arranges them into a SchemaDefinition.

A schema type can be specified explicitly using the schema_type parameter, currently only TABLE is supported and this is also the default.

Note

To define the inputs or outputs of a TracModel, use define_input_table() or define_output_table() instead.

Parameters:
  • fields (FieldSchema | List[FieldSchema]) – The list of fields to include in the schema

  • schema_type (SchemaType) – The type of schema to create (currently only TABLE schemas are supported)

  • dynamic (bool) – Define a dynamic schema (fields list should be empty)

Returns:

A schema definition built from the supplied fields

Return type:

SchemaDefinition

tracdap.rt.api.load_schema(package, schema_file, schema_type=SchemaType.TABLE)

Load a SchemaDefinition from a CSV file in the model package

The schema CSV file must contain the following columns:

  • field_name (string, required)

  • field_type (BasicType, required)

  • label (string, required)

  • business_key (boolean, optional)

  • categorical (boolean, optional)

  • format_code (string, optional)

Field ordering is assigned by the order the fields are listed in the CSV file. A schema type can be specified explicitly using the schema_type parameter, currently only TABLE is supported and this is also the default.

Note

To define the inputs or outputs of a TracModel, a schema can be loaded with this function and used to construct a ModelInputSchema or ModelOutputSchema.

Parameters:
  • package (ModuleType | str) – Package (or package name) in the model repository that contains the schema file

  • schema_file (str) – Name of the schema file to load, which must be in the specified package

  • schema_type (SchemaType) – The type of schema to create (currently only TABLE schemas are supported)

Returns:

A schema definition loaded from the schema file

Return type:

SchemaDefinition

tracdap.rt.api.BOOLEAN

Synonym for BasicType.BOOLEAN

tracdap.rt.api.DATE

Synonym for BasicType.DATE

tracdap.rt.api.DATETIME

Synonym for BasicType.DATETIME

tracdap.rt.api.DECIMAL

Synonym for BasicType.DECIMAL

tracdap.rt.api.FLOAT

Synonym for BasicType.FLOAT

tracdap.rt.api.INTEGER

Synonym for BasicType.INTEGER

tracdap.rt.api.STRING

Synonym for BasicType.STRING